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Micro-cavitation bubbles generated by ultrasound have wide and important
applications in medical ultrasonics and sonochemistry. An approximate theory is
developed for nonlinear and non-spherical bubbles in a compressible liquid by using
the method of matched asymptotic expansions. The perturbation is performed to
the second order in terms of a small parameter, the bubble-wall Mach number. The
inner flow near the bubble can be approximated as incompressible at the first and
second orders, leading to the use of Laplace’s equation, whereas the outer flow far
away from the bubble can be described by the linear wave equation, also for the first
and second orders. Matching between the two expansions provides the model for the
non-spherical bubble behaviour in a compressible fluid. A numerical model using the
mixed Eulerian–Lagrangian method and a modified boundary integral method is used
to obtain the evolving bubble shapes. The primary advantage of this method is its
computational efficiency over using the wave equation throughout the fluid domain.
The numerical model is validated against the Keller–Herring equation for spherical
bubbles in weakly compressible liquids with excellent agreement being obtained for
the bubble radius evolution up to the fourth oscillation. Numerical analyses are
further performed for non-spherical oscillating acoustic bubbles. Bubble evolution
and jet formation are simulated. Outputs also include the bubble volume, bubble
displacement, Kelvin impulse and liquid jet tip velocity. Bubble behaviour is studied
in terms of the wave frequency and amplitude. Particular attention is paid to the
conditions if/when the bubble jet is formed and when the bubble becomes multiply
connected, often forming a toroidal bubble. When subjected to a weak acoustic wave,
bubble jets may develop at the two poles of the bubble surface after several cycles
of oscillations. A resonant phenomenon occurs when the wave frequency is equal to
the natural oscillation frequency of the bubble. When subjected to a strong acoustic
wave, a vigorous liquid jet develops along the direction of wave propagation in only
a few cycles of the acoustic wave.
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1. Introduction
Cavitation bubble dynamics have been studied extensively for about a century.

Traditional research activities on violent bubble dynamics have generally been
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associated with cavitation on ship propellers, fluid machinery and piping systems,
as well as underwater explosions (Rayleigh 1917; Taylor 1942; Plesset & Prosperetti
1977; Blake & Gibson 1987). They continue to remain as important application areas.

Recent research on micro-cavitation bubbles subjected to ultrasound plays a
key role in numerous medical procedures, including sonoporation, ultrasound
lithotripsy, phacoemulsification, brain tumour surgery, and muscle and bone therapies
(Putterman & Weninger 2000; Reddy & Szeri 2002; Day 2005; Calvisi et al. 2008). It
also has major applications in industrial aqueous systems, including ultrasonic cleaners
and processors, environmental remediation or enhanced crystallization (Young 1989;
Leighton 1994; Blake et al. 1999).

In this paper, we are concerned with the modelling of cavitation in a liquid
caused by the influence of an incident acoustic wave, with examples of practical
applications being found in medical ultrasonic and sonochemical devices. In this
phenomenon, the weak compressibility of the liquid should be considered for
describing the propagation of an acoustic wave, since the more commonly used
incompressible formulation neglects the finite speed of propagation of the pressure
wave. In addition, liquid compressibility facilitates the dispersive radiation of energy,
which influences important characteristics of nonlinear forced oscillatory motion such
as period doubling and transition to chaos (Prosperetti & Lezzi 1986). Furthermore, we
know from spherical bubble studies that admitting compressibility into the Rayleigh–
Plesset equation alters the peak internal pressures as well as altering the afterbounce
compressive effects on which the peak temperature depends (Blake et al. 1999). It is
therefore clear that compressibility needs to be incorporated into the non-spherical
bubble simulation to yield a more realistic and practical model.

The radial dynamics of spherical bubbles in compressible fluids have been studied
extensively for many decades. This problem was first considered in connection with
an underwater explosion (Herring 1941; Cole 1948). Keller and co-workers (Keller &
Kolodner 1956; Epstein & Keller 1971; Keller & Miksis 1980) later formulated an
equation for a spherical bubble using the wave equation and the incompressible
Bernoulli equation.

Prosperetti & Lezzi (1986) studied the radial dynamics of spherical bubbles in
compressible fluids using the method of matched asymptotic expansions to the second
order in terms of the bubble-wall Mach number. They found a one-parameter family
of equations to describe this motion. This one-parameter family of equations includes
the well-known Herring (1941) and Keller equations (Keller & Kolodner 1956).
Lezzi & Prosperetti (1987) further carried out the third-order analysis for the problem.
It was noted that the second-order correction to the incompressible results captures
to a large extent the effect of compressibility, with the next term having only a minor
influence.

The theoretical studies on the translation and shape oscillations of acoustic bubbles
have mainly been based on the assumption that the bubble is approximately spherical
(cf. Brennen 1995; Feng & Leal 1997; Reddy & Szeri 2002; Doinikov 2004). Recently,
Shaw (2006, 2009) studied the shape stability of a bubble in an acoustic travelling
wave and presented stability maps of driving pressure versus driving frequency and
driving pressure versus the equilibrium bubble radius, providing a valuable insight
into bubble behaviour.

In this paper, non-spherical bubble dynamics in a compressible liquid are studied
using the method of matched asymptotic expansions. Acoustic cavitation bubbles are
typically with, in the case of transient cavitation, a lifetime of only a small number of
cycles of oscillation (1–20) before they break up to form the cavitation nuclei for new
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bubbles (Brennen 2002; Delale & Tunc 2004). Their behaviour is controlled by a range
of physical phenomena – amplitude of applied acoustic pressure, bubble size, bubble
concentration (distance to nearest neighbour), gas solubility, heat transfer, surface
tension and, for very small bubbles, viscosity. However, the fluid mechanics is typically
dominated by inertial effects as indicated by the Reynolds number O(102–104).

We assume that the bubble radius is small compared to the wavelength of the
acoustic wave. The bubble radius is typically in the range of O(µm–mm) in diameter,
while the wavelength λ of an acoustic wave is λ= c/f � 10 mm, when the acoustic
frequency f � 150 kHz, where c is the sound speed in water (c =1500 m s−1). As
an illustration, a typical frequency f of the acoustic wave field is 20 kHz, with a
corresponding wavelength λ=75 mm. Thus, we may approximate the flow around
the bubble as incompressible and in the far field as weakly compressible (although
liquid jet impact and the possibility of shockwaves at bubble rebound should not be
entirely discounted).

With the above considerations, the fluid domain is divided into the inner and outer
regions. The inner region near the bubble has the dimension of the order of the
maximum bubble radius. The outer region is far away from the bubble, whose spatial
dimension is of the order of the wavelength. In the perturbation analysis developed
in this paper, the flow is modelled as an incompressible potential flow satisfying
Laplace’s equation for the first two terms in the inner region. In the outer region, the
flow is modelled as a compressible potential flow satisfying the wave equation, again
for the first two terms. Higher-order terms though are solutions of non-homogeneous
equations.

The mixed Eulerian–Lagrangian method (MEL) is well developed for the simulation
of bubble dynamics with the assumption of an inviscid, irrotational and incompressible
fluid. The MEL was originally developed by Longuet-Higgins & Cokelet (1976)
for modelling nonlinear transient water waves, which has wide applications in
simulating the nonlinear transient water wave (cf. Tsai & Yue 1996; Wang 2005).
The axisymmetric MEL modelling has been implemented for the motion of a bubble
near a rigid wall or a free surface (cf. Lenoir 1979; Guerri, Lucca & Prosperetti 1981;
Blake, Taib & Doherty 1986, 1987; Best 1993; Zhang, Duncan & Chahine 1993;
Zhang and Duncan 1994; Brujan et al. 2002; Lee, Klaseboer & Khoo 2007). The
three-dimensional MEL was implemented for the motion of bubbles near an inclined
wall, a free surface and/or a body (cf. Chahine & Perdue 1988; Blake et al. 1997; Wang
1998, 2004; Klaseboer et al. 2005). Calvisi et al. (2007) modelled bubble dynamics
subjected to a travelling wave using the incompressible MEL. Therefore, in this paper,
we extend the MEL modelling in bubble dynamics to a weakly compressible liquid
subjected to a progressive acoustic wave.

Bubble dynamics in a compressible liquid can also be simulated using domain
approaches, such as the high-order accurate shock- and interface-capturing scheme
(Johnsen & Colonius 2009), orthogonal boundary-fitted grids for axisymmetric
bubbles (Yang & Prosperetti 2008), the free Lagrange method (Turangan et al.
2008), the arbitrary Lagrangian–Eulerian method (Yue et al. 2007) and front-tracking
method coupled with SIMPLE algorithm (Hua & Lou 2007). A direct simulation of
an acoustic bubble of multiple oscillations is extremely computationally demanding.
It is a multi-scale problem since the wavelength is much larger than the bubble
radius. It involves a large discretized computational domain with the dimension of
the order of the wavelength for describing the propagation of the acoustic wave, and
a very long time interval (as long as 20 cycles of oscillations or more). Consequently,
any theoretical development that can reduce the computational complexity is highly
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desirable and thus opening up the opportunity for a relatively simple computational
analysis of a wide range of models, a particular strength of the developments in this
paper.

This paper is organized as follows. In § 2, the flow problem is formulated based on
the compressible potential flow theory. The formulation is rendered dimensionless in
§ 3. The asymptotic analyses of the inner and outer flows are performed in § § 4 and
5, respectively, and are summarized in § 6. In § 7, the numerical model using the MEL
modelling is formulated and developed. The numerical model is compared against the
Keller–Herring equation (KHE) for spherical bubbles in § 8, and numerical analyses
are further carried out for non-spherical bubble dynamics in compressible liquids
caused by weak and strong acoustic waves in § § 9 and 10, respectively. Finally, in
§ 11, this new study is summarized and the key outcomes are identified with reference
to the opportunities for further development in the theory and modelling of such
phenomena as an underwater explosion, single bubble sonoluminescence, boundary
effects, contrast agent bubbles and mixing phenomenon.

2. Mathematical formulation
Consider a cavitation bubble with typical radius of O(µm–mm) subjected to an

acoustic wave with high frequency ultrasound O(100–103) kHz and at high intensity
O(101–103) w cm2 (cf. Young 1989; Leighton 1994; Blake et al. 1999). The bubble
usually oscillates for a small number of cycles (1–20) before it breaks up to form the
cavitation nuclei for new bubbles. Acoustic bubble dynamics are typically dominated
by inertial effects as indicated by a high Reynolds number, being of O(102–104).
Time scales are short, typically O(µs–ms), thus limiting the dispersion of vorticity
to a very thin layer adjacent to the bubble. Bubble dynamics can thus be modelled
approximately based on potential flow theory.

In the light of the above, we describe the liquid as inviscid and compressible. A
Cartesian-coordinate system is chosen, with the origin at the centre of the bubble at
t = 0, and the z-axis is along the direction of the acoustic wave. The liquid flow is
governed by the equation of mass conservation

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1)

and the equation for momentum conservation

∂u
∂t

+ u · ∇u = − 1

ρ
∇p. (2.2)

Buoyancy is ignored due to the small size O(µm–mm) of the bubbles and short time
scales O(µs–ms).

In many areas of bubble dynamics, significant liquid compressibility due to high-
speed motions usually occurs only when thermal effects in the liquid are unimportant
(Plesset & Prosperetti 1977). We therefore assume that thermal effects in the liquid are
insignificant. The liquid state is thus completely defined by a single thermodynamic
variable. Thus, the sound speed c and the enthalpy h of the liquid can be defined as
follows:

c2 =
dp

dρ
, h =

∫ p

p∞

dp

ρ
, (2.3a, b)
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where the reference pressure p∞ is the pressure in the undisturbed liquid (hydrostatic
pressure). Additionally, heat and mass transfer across the bubble surface could be
included (cf. Szeri et al. 2003), but will not be included in this paper.

By assuming that the flow is irrotational, we may introduce a velocity potential ϕ

such that u = ∇ϕ. With this definition, (2.1) is rewritten as

∇2ϕ +
1

ρ

Dρ

Dt
= 0, (2.4)

while (2.2) is integrated once to give the Bernoulli equation

∂ϕ

∂t
+

1

2
|∇ϕ|2 + h = 0. (2.5)

Here D/Dt in (2.4) is the substantial derivative, i.e. D/Dt = ∂/∂t +u · ∇. The left-hand
side of (2.5) may be equal to zero since the enthalpy is referenced to the undisturbed
fluid at infinity. In the case where an incident wave propagates to z → −∞, the fluid is
undisturbed at z → ∞, and thus the left-hand side of (2.5) can be chosen to be equal
to zero.

Using (2.3), (2.4) becomes

∇2ϕ +
1

c2

(
∂h

∂t
+ ∇ϕ · ∇h

)
= 0. (2.6)

To find expressions for c and h, an equation of state of the liquid is required, and we
use the Tait model relating pressure to density as follows:

p + B

p∞ + B
=

(
ρ

ρ∞

)n

. (2.7)

The values B =3049.13 bars, n= 7.15 give an excellent fit to the experimental
pressure–density relation for water up to 105 bars (Fujikawa & Akamatsu 1980).

The substitution of (2.7) into (2.3a, b) yields

c2 =
n(p + B)

ρ
=

n

ρ∞
(p∞ + B)1/n(p + B)(n−1)/n, (2.8a)

h =
c2 − c2

∞
n − 1

=
c2

∞
n − 1

(
c2

c2
∞

− 1

)
=

c2
∞

n − 1

(
p + B

p∞ + B

ρ∞

ρ
− 1

)
=

c2
∞

n − 1

((
p + B

p∞ + B

)(n−1)/n

− 1

)
, (2.8b)

where c∞ is the wave speed of the acoustic wave in the undisturbed liquid. We now
expand the enthalpy h and the sound speed c around the equilibrium pressure p∞
using a Taylor series expansion as follows (Prosperetti & Lezzi 1986):

h =
p − p∞

ρ∞
− 1

2c2
∞

(
p − p∞

ρ∞

)2

+ · · · , (2.9a)

1

c2
=

1

c2
∞

− p − p∞

c4
∞

dc2

dp

∣∣∣∣
p∞

+ · · · =
1

c2
∞

− (n − 1)
p − p∞

c4
∞ρ∞

+ · · · . (2.9b)

We consider the internal contents inside the bubble, consisting of a non-condensable
gas and vapour, to be an ideal gas mixture. The partial pressure of vapour pv is a
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function of the temperature of the bubble wall only and is assumed to be small for
most cases under investigation (pv ∼ 2 kPa at 20◦C) and is often negligible since
it is usually much smaller than the hydrostatic or reference pressure of the system
(Brennen 1995). The expansion and compression of the gas of the bubble is adiabatic
and thus the partial pressure of the gas pg follows the adiabatic law. According to
Dalton’s law, the total pressure of the gas and the vapour is (Best & Kucera 1992;
Brennen 1995)

pb = pv + pg = pv + pg0

(
V0

V

)γ

. (2.10)

Here V0 is the initial volume of the bubble, pg0 is the initial pressure of the non-
condensable gas content and γ is the ratio of the specific heats of the gas content.
We take γ = 1.25 in our calculations unless specified otherwise.

To complete the mathematical formulation, we need the boundary conditions on
the bubble surface as well as at infinity. The kinematic material boundary condition
on the bubble surface is given by the Lagrangian representation for a particle to
remain on the surface. Thus, we have

dr
dt

= ∇ϕ for r on S. (2.11)

Using (2.8b) the enthalpy of the liquid on the bubble surface hL is given by

hL =
c2

∞
n − 1

((
pL + B

p∞ + B

)(n−1)/n

− 1

)
, (2.12)

where pL is the liquid pressure on the bubble surface, where

pL = pv + pg0

(
V0

V

)γ

− σ

(
1

R1

+
1

R2

)
, (2.13)

with R1 and R2 are the principal radii of the curvature and σ is the surface
tension coefficient. Equation (2.13) requires that the surface normal stresses should
be continuous across the bubble surface.

Assuming that the incident acoustic wave is a harmonic plane wave along the z-axis
yields the boundary condition at infinity

ϕ|r→∞ = ϕa = b cos(kz − ωt + θ0), (2.14)

where b, k, ω and θ0 are the amplitude, wave number, frequency and initial phase,
respectively, of the incident acoustic wave, given the initial location of the bubble
centre is at z = 0.

3. Non-dimensional formulation
Let Rs and U denote typical scales of the bubble radius and the liquid velocity on

the bubble surface, respectively. We introduce non-dimensional quantities, indicated
by asterisks, following Prosperetti & Lezzi (1986),

r = Rs r∗, t =
Rs

U
t∗, ϕ = RsUϕ∗, (3.1a–c)

h = U 2h∗, c = c∞c∗, p = p∞ + ρ∞U 2p∗. (3.2a–c)

This non-dimensionalization is a choice based on the following considerations
developed by Lezzi & Prosperetti (1987). The time scale is chosen as T = Rs/U ,
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which implies that the bubble radius undergoes a change of the order of Rs during
the typical time T, where the velocity scale U is given by U = (p∞/ρ∞)1/2, obtained
from (3.2c). The enthalpy scale is chosen as U 2, which implies that the enthalpy is of
the order of the kinetic energy, both per unit mass.

In terms of the dimensionless variables, (2.6) and (2.5) become

∇2
∗ϕ∗ +

ε2

c2
∗

(
∂h∗

∂t∗
+ ∇∗ϕ∗ · ∇∗h∗

)
= 0, (3.3a)

∂ϕ∗

∂t∗
+

1

2
|∇∗ϕ∗|2 + h∗ = 0, (3.3b)

where ∇∗ is defined in terms of r∗, and

ε =
U

c∞
(3.4)

is the characteristic bubble-wall Mach number, which is assumed to be small in this
study.

The small parameter ε can also be interpreted as the ratio of the typical scale of
the bubble radius Rs over the wavelength of the acoustic wave λ. So, for example,

Rs

λ
=

O(UT )

c∞Ta

= O

(
ε

T

Ta

)
, (3.5)

where Ta is the period of the acoustic wave. When the period of the acoustic wave is
comparable with the period of the oscillating bubble, Ta = O(T ), we have Rs/λ= O(ε).

The bubble-wall Mach number may not always be small in practice. For example,
when the initial pressure of the bubble is sufficiently high, its collapse and rebound
may generate a shock wave, as observed experimentally by means of high-speed
cinematography (Philipp & Lauterborn 1998; Lindau & Lauterborn 2003). The
present theory is thus valid for weakly compressible fluids, where the nonlinear
shock-wave formulation has a negligible effect on the flow.

The dimensionless speed of sound of the liquid is obtained from (2.8) and (3.2a, b)
as follows:

c2
∗ = 1 + ε2(n − 1)h∗. (3.6)

The enthalpy of the liquid is given by

h∗ =
1

ε2

1

n − 1

((
p + B

p∞ + B

)(n−1)/n

− 1

)
. (3.7)

In terms of the dimensionless variables, (2.9a, b) become

1

c2
∗

= 1 − (n − 1)ε2p∗ + o(ε2), (3.8a)

h∗ = p∗ − 1
2
ε2p2

∗ + o(ε2). (3.8b)

Using the approximations in (3.8), (3.3a) becomes

∇2
∗ϕ∗ + ε2(1 − (n − 1)ε2h∗)

(
∂h∗

∂t∗
+ ∇∗ϕ∗ · ∇∗h∗

)
+ o(ε4) = 0, (3.9)



198 Q. X. Wang and J. R. Blake

Acoustic
wave

Outer region:(a)
(b)

Scale: (x, y, z) = O(λ)

Governing equation: ∇2ϕ 0
1

=
∂t2

∂2ϕ
−

c2
∞

Inner region:

Scale: (x, y, z) = O(Rs)
Governing equation: ∇2ϕ = 0

Bubble

Rs
λ

c = fλ

Figure 1. A representation of the weakly compressible model for a micro-cavitation bubble
subjected to a plane acoustic wave, with speed of sound c∞ and the wavelength λ being much
larger than the equilibrium radius of the bubble Rs .

The boundary conditions on the bubble surface are

dr∗

dt∗
= ∇∗ϕ∗, (3.10a)

hL∗ =
1

ε2

1

n − 1

((
pL + B

p∞ + B

)(n−1)/n

− 1

)
, (3.10b)

where hL∗ is the enthalpy of the liquid on the bubble surface.
The boundary condition at infinity is given by

ϕ∗|r∗→∞ = b∗ cos(k∗z∗ − ω∗t∗ + θ0), (3.11)

where the amplitude b∗, wave number k∗ and frequency ω∗ of the acoustic wave are
defined as follows:

b∗ =
b

RsU
, k∗ = Rsk, ω∗ =

Rs

U
ω. (3.12)

4. Inner expansion
To develop matched asymptotic expansions, we divide the fluid domain into two

regions: the inner region near the bubble where (x, y, z) =O(Rs) and the outer region
far away from the bubble where (x, y, z) =O(c∞T ), as illustrated in figure 1.

In the inner region r∗ = (x∗, y∗, z∗) = O(1), which are chosen as the inner variables.
The inner expansions for the potential ϕ∗ and enthalpy h∗ are defined as follows:

ϕ∗(r∗, t∗) = ϕ0(r∗, t∗) + εϕ1(r∗, t∗) + ε2ϕ2(r∗, t∗) + · · · , (4.1a)

h∗(r∗, t∗) = h0(r∗, t∗) + εh1(r∗, t∗) + ε2h2(r∗, t∗) + · · · . (4.1b)

The substitution of (4.1a, b) into the equation of continuity (3.9) and the Bernoulli
equation (3.3b) yields the inner field equations for i = 0, 1, 2

∇2
∗ϕ0 = 0, (4.2a)

∇2
∗ϕ1 = 0, (4.2b)
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∇2
∗ϕ2 = −

(
∂h0

∂t∗
+ ∇∗ϕ0 · ∇∗h0

)
; (4.2c)

and

∂ϕ0

∂t∗
+

1

2
|∇∗ϕ0|2 + h0 = 0, (4.3a)

∂ϕ1

∂t∗
+ ∇∗ϕ0 · ∇∗ϕ1 + h1 = 0, (4.3b)

∂ϕ2

∂t∗
+ ∇∗ϕ0 · ∇∗ϕ2 + h2 = −1

2
|∇∗ϕ1|2 . (4.3c)

The problem has been decoupled between the potential and enthalpy to second
order, with the first two-order inner potential solutions ϕ0 and ϕ1 satisfying Laplace’s
equation, whereas the third-order solution ϕ2 satisfies a Poisson equation, a non-
homogeneous equation.

Because ϕ0∗ and ϕ1∗ satisfy Laplace’s equations (4.2a, b), we may write their general
solutions as follows, using the second Gauss identity:

ϕi(r∗, t∗) = fi(t∗) + gi(t∗)z∗

+

∫
S

(
∂ϕi(q, t∗)

∂n
G(r∗, q) − ϕi(q, t∗)

∂G(r∗, q)

∂n

)
dS(q), for i = 0, 1, (4.4)

where S is the bubble surface, n is the unit outward normal on the surface, q is the
integration variable on the surface S and the free space Green function is

G(r∗, q) =
1

4π

1

|r∗ − q| . (4.5)

It is critical to include the first two terms fi(t∗)+ gi(t∗)z∗ in (4.4), where fi(t∗), gi(t∗)
for i = 0, 1 are arbitrary functions of time. In principle, the general solutions ϕ0∗ and
ϕ1∗ should include linear terms in x∗ and y∗, but only the linear term in z∗ is included
since the acoustic wave propagates along the z-axis in the problem under study. The
unknown functions fi(t∗) and gi(t∗) are to be determined by the matching between
the inner and outer expansions in § 5.

To prepare for the matching between the inner and outer expansions, we calculate
the outer limit of the inner expansion. In the outer region (x, y, z) =O(c∞T ), we
introduce the outer variable

r̃ = (x̃, ỹ, z̃) =
1

c∞T
(x, y, z) =

Rs

c∞T
(x∗, y∗, z∗) = (εx∗, εy∗, εz∗) = εr∗. (4.6)

We can make the following estimations:

4πG(r∗, q) =
1

|r∗ − q| =
1

|r̃/ε − q| =
ε

r̃
+ ε2 r̃ · q

r̃3
+ O(ε3), (4.7a)

4π∇qG(r∗, q) =
r∗ − q

|r∗ − q|3
=

ε2 r̃ − ε3q

|r̃ − εq|3
= ε2 r̃

r̃3
+ O(ε3), (4.7b)

where r̃ = |r̃ | and ∇q is in terms of q.
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Substituting (4.7) into (4.4) yields the outer limits of first two order inner solutions

(ϕi)
o = fi(t∗) + gi(t∗)

z̃

ε
+

1

4π

∫
S

(
∂ϕi(q)

∂n

(
ε

r̃
+ ε2 r̃ · q

r̃3

)
− ϕi(q)ε2 n · r̃

r̃3

)
dS(q) + O(ε3)

= fi(t∗) + gi(t∗)
z̃

ε
+ ε

1

4π

mi (t∗)

r̃
− ε2 1

4π

d i (t∗) · r̃
r̃3

+ O(ε3)

= fi (t∗) + gi (t∗)
z̃

ε
+ ε

1

4π

mi (t∗)

r̃
+ O(ε2) for i = 0, 1, (4.8)

where

mi(t∗) =

∫
S

∂ϕi(q, t∗)

∂n
dS(q), d i(t∗) =

∫
S

(
nϕi(q, t∗) − q

∂ϕi(q, t∗)

∂n

)
dS(q) for i = 0, 1.

(4.9a, b)
The outer limit of the inner expansion to second order is therefore given by

(ϕ∗)
o = (ϕ0)

o + ε(ϕ1)
o = f0(t∗) + g0(t∗)z∗ +

1

4π

m0(t∗)

r∗
+ εf1(t∗) + εg1(t∗)z∗ +O(ε2),

(4.10)
where r∗ = |r∗|.

5. Analytical outer solution
Using the outer variable (x̃, ỹ, z̃) defined in (4.6), (3.9) and (3.3b) become

∇̃2ϕ∗ +
∂h∗

∂t∗
+ ε2

(
∇̃ϕ∗ · ∇̃h∗ − (n − 1) h∗

∂h∗

∂t∗

)
+ o(ε2) = 0, (5.1a)

∂ϕ∗

∂t∗
+

1

2
ε2|∇̃ϕ∗|2 + h∗ = 0, (5.1b)

where the operator ∇̃ is defined in terms of r̃ .
Denoting the outer expansions as follows:

ϕ∗ = φ0(r̃, t∗) + εφ1(r̃, t∗) + ε2φ2(r̃, t∗) + · · · , (5.2a)

h∗ = H0(r̃, t∗) + εH1(r̃, t∗) + ε2H2(r̃, t∗) + · · · . (5.3a)

and substituting them into (5.1a, b) yields the equations for the first three terms in
the outer solution,

∇̃2φ0 +
∂H0

∂t∗
= 0, (5.3a)

∇̃2φ1 +
∂H1

∂t∗
= 0, (5.3b)

∇̃2φ2 +
∂H2

∂t∗
= −∇̃φ0∇̃H0 + (n − 1)H0

∂H0

∂t∗
; (5.3c)

and
∂φ0

∂t∗
+ H0 = 0, (5.4a)

∂φ1

∂t∗
+ H1 = 0, (5.4b)
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∂φ2

∂t∗
+ H2 = −1

2
|∇̃φ0|2. (5.4c)

Combining (5.3a) and (5.4a) and (5.3b) and (5.4b), respectively, yields

∇̃2φi − ∂2φi

∂t2
∗

= 0 for i = 0, 1. (5.5)

Far from the bubble, the finite speed of propagation is essential. However, the
amplitude of the fluid motion generated by the bubble motion is much attenuated, so
the equation can be linearized. The problem has been decoupled between the potential
and the enthalpy to second order, with the first two-order outer potential solutions
φ0 and φ1 satisfying the linear wave equation, whereas the third order solutions are
governed by linear non-homogeneous equations.

The outer solution satisfies the input acoustic wave condition (3.11) at infinity,
which is in terms of the outer variable z̃ as follows:

ϕ∗|r̃→∞ = b∗ cos

(
k∗

z̃

ε
− ω∗t∗ + θ0

)
= b∗ cos[ω∗(z̃ − t∗) + θ0]. (5.6)

Here we have used k∗ = εω∗, which may be obtained by using (3.4), (3.12) and the
relation c∞ =ω/k as follows:

k∗

ω∗
=

Rsk

Rsω/U
=

U

ω/k
=

U

c∞
= ε. (5.7)

Because the bubble is small as compared with the wavelength, the far field is not
affected by the existence of the bubble to first order. The leading outer solution is
thus the incident acoustic wave

φ0 = b∗ cos[ω∗(z̃ − t∗) + θ0]. (5.8)

This is unlike the case of a spherical incident wave, where the incident wave is
reflected unaltered at the centre of the spherical wave (Prosperetti & Lezzi 1986).

The general solution of the second-order outer solution φ1 is the well-known
d’Alembert solution of the wave equation

φ1 =
F1(t∗ − r̃) + G1(t∗ + r̃)

r̃
, (5.9)

where F1 and G1 are two arbitrary functions having second-order derivatives.
According to the Sommerfeld radiation condition, φ1 cannot contain incoming waves,
but only outgoing, thus

φ1 =
F1(t∗ − r̃)

r̃
. (5.10)

The inner limits of the first two-order outer expansions are obtained by taking a
Taylor series expansion as follows:

(φ0)
i = b∗ cos[ω∗(εz∗ − t∗) + θ0] = b∗ cos((ω∗t∗ − θ0) − εω∗z∗)

= b∗ cos(ω∗t∗ − θ0) + εb∗ω∗z∗ sin(ω∗t∗ − θ0) + O(ε2), (5.11a)

(φ1)
i =

F1(t∗ − εr∗)

εr∗
=

F1(t∗)

εr∗
− F ′

1(t∗) + O(ε). (5.11b)
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Combining the above results yields the inner limit of the first two-order outer
expansion

(φ)i = b∗ cos(ω∗t∗ − θ0) + εb∗ω∗z∗ sin(ω∗t∗ − θ0) +
F1(t∗)

r∗
− εF ′

1 (t∗) + O(ε2). (5.12)

We use Van Dyke’s matching principle (Van Dyke 1975), i.e. equating the outer limit
of the inner expansion (4.10) and the inner limit of the outer expansion (5.12). This
matching yields

f0 (t∗) = b∗ cos(ω∗t∗ − θ0), g0 (t∗) = 0, (5.13a)

F1 (t∗) =
m0 (t∗)

4π
, (5.13b)

f1 (t∗) = −F ′
1 (t∗) = −m′

0 (t∗)

4π
, g1 (t∗) = b∗ω∗ sin(ω∗t∗ − θ0). (5.13c)

With F1 determined above, we obtain the second-order outer solution φ1:

φ1 =
m0(t∗ − r̃)

4πr̃
. (5.14)

Combining (5.8) and (5.14) yields the first two outer solution terms:

φ = b∗ cos [ω∗(z̃ − t∗) + θ0] + ε
m0(t∗ − r̃)

4πr̃
+ O(ε2). (5.15)

The outer flow becomes a direct problem to second order. The first-order outer
solution is the incident acoustic wave, and the second-order outer solution is due to
a point source whose strength is equal to the rate of change of the bubble volume.

6. The theoretical basis for the computational model: second-order theory
The computational model is based on combining the first two order inner solutions,

ϕ∗(r∗, t∗) = ϕ0(r∗, t∗) + εϕ1(r∗, t∗), satisfying

∇2
∗ϕ∗ = O(ε2), (6.1a)

which is obtained by adding (4.2a, b). The inner solution ϕ∗ satisfies the boundary
conditions (3.10a) on the bubble surface S as follows:

dr∗

dt∗
= ∇∗ϕ∗ + O(ε2) on S. (6.1b)

The dynamic condition on the bubble surface S can be obtained by adding (4.3a, b):

∂ϕ∗

∂t∗
+

1

2
|∇∗ϕ∗|2 + hL∗ = O(ε2) on S, (6.1c)

where hL∗ is given in (3.10b).
The inner solution ϕ∗ also satisfies the far-field condition given in (4.10) and (5.13):

ϕ∗|r∗→∞ = (ϕ∗)
o = f0 (t∗) + εf1 (t∗) + εg1 (t∗) z∗ +

1

4π

m0 (t∗)

r∗
+ O(ε2). (6.1d )

Examining the boundary value problem of ϕ∗, one can draw the following
conclusion: to second order (first-order in ε) the problem reduces to Laplace’s equation
with the compressible effects appearing only in the far-field condition (6.1d). We know
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from (6.1d) that the fluid velocity in the far field is ∇∗ϕ∗|t∗=0 = εg1(t∗)k, where k is the
unit vector along the z∗-axis.

To close this formulation we need the initial condition on the bubble surface. We
assume that the bubble is in an equilibrium state before the arrival of the acoustic
wave. Since the acoustic wave travels at infinite speed in the inner region, the initial
condition on the bubble surface is given by,

ϕn∗|t∗=0 = εg1 (t∗) n · k on r∗ = R0∗. (6.2)

Physically the time period for the wave passing through the inner region is at
O(Rs/c∞), and is much smaller than the bubble oscillation period O(Rs/U ). The
bubble motion during this period is negligible.

We choose the coordinates rb moving with a (time-dependent) uniform stream at
infinity, in which the flow velocity vanishes at infinity

tb = t∗, rb = r∗ + εf0 (t∗) k, (6.3)

Therefore

∂

∂t∗
=

∂

∂tb
− εg1(tb)

∂

∂zb

,
∂

∂x∗
=

∂

∂xb

,
∂

∂y∗
=

∂

∂yb

,
∂

∂z∗
=

∂

∂zb

. (6.4)

In the above equations we used the relation, f ′
0(t∗) = −g1(t∗), which can be obtained

from (5.13).
Substituting (6.3) and (6.4) into (6.1) and (6.2) yields

∇2
bϕ∗ = O(ε2), (6.5a)

drb

dtb
= −εg1(tb)k + ∇bϕ∗ + O(ε2) on S, (6.5b)

∂ϕ∗

∂tb
− εg1(tb)

∂ϕ∗

∂zb

+
1

2
|∇bϕ∗|2 + hL∗ = O(ε2) on S, (6.5c)

ϕ∗|rb→∞ = f0 (tb) + εf1 (tb) + εg1 (tb) zb +
1

4π

m0(tb)

rb

+ O(ε2), (6.5d )

ϕn∗|tb=0 = εg1 (tb) n · k on r∗ = R0∗, (6.5e)

where the operator ∇b is in terms of rb. We have used the estimation r∗ = rb + O(ε)
in (6.5d ).

In addition, we make the following decomposition:

ϕ∗ = f0 (tb) + εf1 (tb) + εg1 (tb) zb + Φ. (6.6)

Substituting (6.6) into (6.5) yields

∇2
bΦ = O(ε2), (6.7a)

drb

dtb
= ∇bΦ + O(ε2), (6.7b)

dΦ

dtb
=

1

2
|∇bΦ|2 − (hL∗ + (f ′

0(tb) + εf ′
1(tb) + εg′

1(tb)zb) + O(ε2) on S, (6.7c)

Φ|rb→∞ =
1

4π

m0(tb)

rb

+ O(ε2), (6.7d )

Φn∗|tb=0 = 0 on r∗ = R0∗. (6.7e)
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The problem can be interpreted as a bubble oscillating in a uniform stream, at the
speed of εg1(t∗) and with pressure oscillating at the frequency of the acoustic wave.
The compressible effect associated with the term εg′

1(tb)zb in (6.7c) is the inertial force
in the non-inertial reference frame rb.

The liquid enthalpy hL∗ on the bubble surface needed in (6.7c) can be calculated
using (3.8b), (3.2c) and (2.13) as follows:

hL∗ = pL∗ + O(ε2) =
pL − p∞

p∞
+ O(ε2)

= −1 −
(

pv∗ + pg0∗

(
V0∗

V∗

)γ

− σ∗

(
1

R1∗
+

1

R2∗

))
+ O(ε2), (6.8)

where the asterisk denotes the dimensionless variables defined as follows:

pg0∗ =
pg0

p∞
, V0∗ =

V0

R3
s

, V∗ =
V

R3
s

, (6.9a)

σ∗ =
σ

Rsp∞
, R1∗ =

R1

Rs

, R2∗ =
R2

Rs

. (6.9b)

Consequently, (6.7c) becomes

dΦ

dtb
= 1 +

1

2
|∇bΦ|2 −

(
pv∗ + pg0∗

(
V0∗

V∗

)γ

− σ∗

(
1

R1∗
+

1

R2∗

))
− (f ′

0(tb) + εf ′
1(tb) + εg′

1(tb)zb) + O(ε2). (6.10)

At this stage we have changed the formulation in terms of the enthalpy to the pressure
by using (6.10) to replace (6.7c).

Using the definition mo(tb) in (4.9a) and (6.6) leads to

m0 (t∗) =

∫
S

∂ϕ0

∂n
dS =

∫
S

∂ϕ∗

∂n
dS + O (ε)

=

∫
S

∇b (Φ + f0 (tb) + εf1 (tb) + εg1 (tb) zb) · n dS =

∫
S

∂Φ

∂n
dS + O(ε). (6.11)

Substituting f0(t∗), f1(t∗), g1(t∗) and m0(t∗) from (5.13) into (6.10) yields

dΦ

dtb
= 1 +

1

2
|∇bΦ|2 −

(
pv∗ + pg0∗

(
V0∗

V∗

)γ

− σ∗

(
1

R1∗
+

1

R2∗

))
+ b∗ω∗ sin (ω∗tb − θ0) + ε

1

4π
m′′

0 (tb) − εb∗ω
2
∗ cos (ω∗tb − θ0) zb + O(ε2). (6.12)

As compared with the incompressible flow modelling, there are three additional
terms associated with the acoustic wave contribution in the dynamic condition on
the bubble surface (6.12). The first term being O(1), b∗ω∗ sin(ω∗tb − θ0), is the local
acoustic pressure at the bubble centre. Indeed, the first-order local acoustic pressure
at the centre of the bubble can be given by the Bernoulli equation

pa(t) = −ρ∞
∂ϕa

∂t

∣∣∣∣
z=0

= ρ∞bω sin(ωt − θ0). (6.13)
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In the dimensionless format

pa∗ (tb) = a∗ sin(ω∗tb − θ0), (6.14)

where pa (tb) = p∞pa∗ (tb), a∗ = b∗ω∗.
The second term, ε(1/4π)m′′

0(tb), is associated with the outward propagating acoustic
wave due to the oscillations generated by the bubble motion from the incoming
progressive wave from the far field. The first two terms yield only spherical wave field
effects.

The third term, −εb∗ω
2
∗ cos(ω∗tb − θ0)zb, is associated with the inertial force effect

due to the acoustic wave and breaks spherical symmetry. Note that if the buoyancy
effect is also included, the dynamic condition on the bubble surface will include a
term −δ2

bzb, where δb =
√

ρ∞gRs/p∞ is termed as the buoyancy parameter measuring
the strength of the buoyancy effect, where g is the gravity acceleration (cf. Wang et al.
1996b). Similarly, we define the inertial force parameter δa as follows:

δa = ω∗
√

εb∗ |cos(ω∗tb − θ0)|sgn(cos(ω∗tb − θ0)), (6.15)

where the sign function returns −1, 0, or 1 when its variable value is negative, zero, or
positive respectively. Like gravity, this inertial force term leads to aspherical evolution
of the bubble, but in this study it varies with time.

Calvisi et al. (2007) and Klaseboer et al. (2007) model a bubble subjected to
a travelling wave using the incompressible potential flow theory. They assume
intuitively that the liquid pressure at the bubble surface is equal to the pressure of the
acoustic wave, resulting in the following dynamic boundary condition on the bubble
surface:

dΦ

dtb
= 1 +

1

2
|∇bΦ|2 −

(
pv∗ + pg0∗

(
V0∗

V∗

)γ

− σ∗

(
1

R1∗
+

1

R2∗

))
− a∗ sin(k∗z∗ − ω∗t∗ + θ0) + O(ε2). (6.16)

The term a∗ sin(k∗zb − ω∗t∗ + θ0) is equivalent to the two terms, b∗ω∗ sin(ω∗tb − θ0)
and −εb∗ω

2
∗ cos(ω∗tb − θ0)zb, in (6.12) to second order. As compared with the previous

studies, this study includes additional terms which allow for the weak compressible
effect.

7. Numerical modelling using the mixed Eulerian–Lagrangian method
In this section, we will develop a numerical model based on the MEL for bubble

dynamics in a weakly compressible liquid subject to an incoming acoustic wave.
One of the principal advantages of the boundary mesh in MEL is that it follows
the transient bubble surface, and thus the bubble surface and the unknowns on
the surface are direct solutions, unlike those obtained by interpolations in domain
approaches.

As shown in § 6, the non-spherical effect due to the inertial force effect of ultrasound
on the bubble motion is a small quantity of the order of the bubble-wall Mach number.
As asymmetric bubble shapes may take several cycles of oscillation of the bubble
to develop, a stable and accurate simulation needs to be carried out for several
oscillations to simulate the accumulation and nonlinear development of the small
non-spherical effect on the bubble behaviour.

Because Φ satisfies Laplace’s equation (6.7a), a solution may be represented in
terms of a boundary integral equation, which is developed from the Green second
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identity

s(rb, tb)Φ(rb, tb) =

∫
S

(
∂Φ(q, tb)

∂n
G(rb, q) − Φ(q, tb)

∂G(rb, q)

∂n

)
dS(q), (7.1a)

where rb is the field point, q is the source point and s(rb, tb) is the solid angle at the
point rb on the bubble surface at the time tb. The free-space Green function G(rb, q)
has been previously defined in (4.5). The integrations are performed on the bubble
surface S.

The solution (7.1a) satisfies the far-field condition (6.7d). The potential Φ needs
to satisfy the boundary conditions (6.7b) and (6.12) on the bubble surface S and the
initial condition (6.7e), which are rewritten for clarity as

drb

dtb
= ∇bΦ on S, (7.1b)

d

dtb

(
Φ − ε

1

4π
m′

0(tb)

)
= 1+

1

2
|∇bΦ|2 −

(
pv∗ +pg0∗

(
V0∗

V∗

)γ

−σ∗

(
1

R1∗
+

1

R2∗

))
+ b∗ω∗ sin(ω∗tb − θ0) − εb∗ω

2
∗ cos(ω∗tb − θ0)zb on S, (7.1c)

Φn∗|tb=0 = 0 on r∗ = R0∗, (7.1d )

where mo(tb) is given in (6.11)

m0(tb) =

∫
S

∂Φ(q, tb)

∂n
dS. (7.2)

The original radiation term in (6.12), ε(1/4π)m′′
0(tb), has been moved to the left-hand

side in (7.1c) to avoid calculation of the second-order time derivative for m0(tb). The
initial boundary value problem defined by (7.1a–d) for the potential Φ specifies the
problem which is to be solved.

Because the bubble surface is axisymmetric, the integrals in (7.1a) can be performed
analytically in the azimuthal angle θ , resulting in a one-dimensional boundary integral
equation on the intersection curve C of the bubble surface and the plane θ = 0, leading
to the representation

2πΦ(rb, tb) =

∫
C

(
∂Φ(q, tb)

∂n
K1(rb, q) − Φ(q, tb)K2(rb, q)

)
dl(ξ ). (7.3)

The intersection curve C is parameterized by arc length ξ , and is interpolated using
cubic splines, which is smooth giving the solid angle s(rb, tb) equal to 2π. The field
point and source point are both on the curve C, rb = (rb, zb, 0), q = (rq(ξ ), zq(ξ ), 0).
The kernel functions K1 and K2 are given as follows (Taib 1985):

K1(rb, q) =
4rqK(k)

D
, (7.4a)

K2(rb, q) =
4rq

JD

{[
dzq

dξ
(rq + rb) − drq

dξ
(zq − zb) − 2rb

k2

dzq

dξ

]
E(k)

1 − k2
+

2rb

k2

dzq

dξ
K(k)

}
,

(7.4b)



Non-spherical bubble dynamics in a compressible liquid. Part 1 207

where

J =

√(
drq

dξ

)2

+

(
dzq

dξ

)2

, D =
√

(rq + rb)2 + (zq − zb)2, k =
2

D

√
rbrq. (7.5)

The functions K(k) and E(k) in (7.4a, b) are the complete elliptic integrals of the first
and second kind (Abramowitz & Stegun 1965). An Evaluation of the elliptic integrals
is obtained from a polynomial/logarithmic approximation (Hastings 1955).

The potential Φ and the normal velocity ∂Φ/∂n on the bubble surface are related to
each other in (7.3). The intersect curve C is then discretized as N linear elements using
N1 =N +1 nodes, which is taken as N1 = 51 in the present calculation. The potential
Φ and the normal velocity ∂Φ/∂n are both assumed to be distributed linearly on an
element. The boundary integral equation (7.3) is discretized by piecewise integration
on each element. With known potential on the bubble surface, the N1 normal velocities
are solved from the resulting matrix equation.

One of the difficulties relating to the boundary integral method (BIM) is the treat-
ment of the singularities of the kernel functions K1(rb, q) and K2(rb, q) when q → rb.
In order to integrate them accurately, the integrals are split into regular and singular
components. The regular component is integrated by the standard Gauss–Legendre
quadrature. The singular component contains an explicit singularity of log type which
can be integrated using the quadrature scheme tabulated by Stroud & Secrest (1966)

for the integral
∫ 1

0
f (ξ ) log(1/x)dx. The so-called ‘4π rule’ has been used to calculate

the diagonal elements of the influence matrix associated with K2, where the diagonal
elements are replaced by 4π minus the sum of all the other elements in the same row
(Taib 1985). This technique is useful in improving the accuracy of the calculation.

In each time step of the MEL model, the bubble surface S and the potential Φ on
the surface are known from the solutions of the previous time step. For the first time
step, values for Φ are known from the initial condition (7.1d). Then ∂Φ/∂n is obtained
by solving the boundary integral equation (7.3) using the BIM. The tangential velocity
at the bubble surface can be obtained by differentiating the potential distribution at
this surface with respect to arc length ξ . Once the normal and tangential velocities
are known, the velocity vector u = ∇bΦ on the right-hand sides of (7.1b, c) can be
resolved.

The bubble volume needed in (7.1c) can be obtained by integrating over the bubble
shape. The function m0(tb) is obtained by the integration of the known normal velocity
distribution ∂Φ/∂n over the bubble surface using (7.2). Its derivative to time m′

0(t∗)
needed in (7.1c) is calculated using a least-square method for stability.

The remaining terms on the right-hand side of (7.1c) are the given functions
relative to the acoustic wave. The bubble surface S and the potential Φ on the surface
are further updated by integrating in time the kinematic and dynamic boundary
conditions (7.1b) and (7.1c) on the bubble surface, respectively.

For numerical stability and for calculation efficiency, the time-step size t is chosen
in accordance with the criterion

tb =
Φ

max |DΦ/Dtb| . (7.6)

This equation limits the maximum change in the nodal potential at each time step to a
specified constant Φ , which is set as Φ = 0.01 in the computation. The maximum
in the denominator of (7.6) is taken over all the nodes on the bubble surface with
DΦ/Dtb given by (7.1c).
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The free surface and bubble surface may lose smoothness in the MEL simulations,
where small-scale numerical errors develop rapidly into a sawtooth-like instability
(Longuet-Higgins & Cokelet 1976; Blake et al. 1986, 1987). The instability profile
depends on meshing and is thus a numerical instability. The five-point smoothing
formula of Longuet-Higgins & Cokelet (1976) is the well-known technique to remedy
this problem. The smoothing is carried out about once every 10 time steps. The
numerical error due to smoothing is of the second order in small quantities in terms
of the mesh size, and has only a very small effect on the solution. In addition, re-
gridding of the bubble surface is performed every time step. Further details of the
numerical modelling can be found in Wang et al. (1996a, b).

For the problem under consideration, an axisymmetric MEL is used. However, the
principle as described here is not limited to axisymmetric configurations, but can also
be applied to fully three-dimensional cases (Wang 1998, 2004).

In the calculations to be described in § § 8–10, the parameters for the liquid are
chosen at ρ∞ = 1000 kg m−3, p∞ = patm = 101.3 kPa and c∞ = 1500 m s−1, where patm

is the standard atmospheric pressure. The reference velocity U and the bubble-wall
Mach number ε are given by U =

√
p∞/ρ∞ = 10 m s−1, ε = U/c∞ =1/150. We will

take σ = 0, pv = 0, θ0 = 0.0 in the calculations unless specified otherwise.

8. Comparisons with previous studies
8.1. Comparison with the Keller–Herring equation for spherical bubbles

For a gas bubble oscillating in an otherwise quiescent liquid, the KHE takes the form
(Prosperetti & Lezzi 1986)(

1 − (1 + κ)ε
dR∗

dt∗

)
R∗

d2R∗

dt2
∗

+
3

2

(
1 −

(
1

3
+ κ

)
ε
dR∗

dt∗

)(
dR∗

dt∗

)2

=

(
1 + (1 − κ)ε

dR∗

dt∗

)
hf ∗ + εR∗

dhf ∗

dt∗
, (8.1)

where κ is an arbitrary parameter. The results of the KHE are insensitive to the
parameter κ and yield almost identical R∗(t∗) curves. In the present calculation κ is
set at κ = 0 (the Keller form).

Substituting (6.8) into (8.1) and using σ∗ = pv∗ = 0 yields the following second-order
nonlinear equation for the bubble radius R∗:(

1 − (1 + κ)ε
dR∗

dt∗

)
R∗

d2R∗

dt2
∗

+
3

2

(
1 −

(
1

3
+ κ

)
ε
dR∗

dt∗

) (
dR∗

dt∗

)2

=

(
1 + (1 − κ)ε

dR∗

dt∗

) (
−1 + pgo∗

(
R0∗

R∗

)3γ
)

− 3γ εpgo∗

(
R0∗

R∗

)3γ
dR∗

dt∗
. (8.2)

The KHE can be integrated accurately using a fourth-order Runge–Kutta method.
The initial condition for the bubble is assumed to be a high-pressure spherical bubble
of radius R0∗ with zero wall velocity. We also assume the dimensionless maximum
radius of 1.0 if compressible effects are ignored. Under this condition, the three
parameters, γ , R0∗ and pg0∗, are related by the following equation:

R
3γ

0∗ − R3
0∗ =

γ − 1

pg0∗

(
R3

0∗ − 1
)
, (8.3)
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Figure 2. Comparison for dimensionless radius histories of the spherical gas bubble using the
KHE and the MEL. The parameters for the case are R0∗ = 0.4696, pg0∗ = 5.0, γ = 1.25 and
b∗ = 0.0 (without acoustic wave).

which may be deduced from the Rayleigh–Plesset equation (Best & Kucera
1992).

A comparison is made for the case where pg0∗ = 5.0, γ = 1.25 and b∗ =0.0 (without
an acoustic wave). The initial radius of the bubble calculated from (8.3) is R0∗ = 0.4696.
As shown in figure 2, the bubble with high initial pressure starts to expand against the
surrounding medium. While the bubble expands, the internal gas pressure decreases
gradually and becomes less than the hydrostatic pressure. Inertia causes the bubble
to overexpand such that the internal gas pressure is much lower than the hydrostatic
pressure, thus arresting the bubble expansion. A little later, the collapse phase begins.
This collapse phase continues until the gas pressure becomes much larger than the
hydrostatic pressure, this time arresting the inward collapse of the bubble and then
followed by a second expansion, leading to an oscillating system due to the balance
between the inertia of the water and the pressure of the gas.

The amplitude of the oscillating bubble radius reduces slightly with time, with the
maximum values (peaks) of radius decreasing with time while the minimum values
(troughs) increase with time. This is as expected, because acoustic wave generated by
the bubble motion radiates energy to infinity with a resulting loss of energy in the
bubble system. The MEL computational result agrees well with that of the KHE over
four oscillations and is nearly undifferentiated.

8.2. Comparison with Shaw (2009) for approximately spherical bubbles

Shaw (2009) studied the oscillation and translation of a bubble subjected to a
travelling wave, assuming the bubble is approximately spherical. The parameters for
the case are: the liquid at p∞ = 101.3 kPa, ρ∞ = 998 kg m−3, c∞ =1500 m s−1, the bubble
at R0 = 2 µm, pv = 0.023p∞, σ = 0.0728 Nm−1; the acoustic wave at f =1004 kHz,
pa =1.2(p∞ − pv) and θ0 = π. We assume that γ = 1.0 (isothermal expansion) when
R � R0 and γ = 1.4 (adiabatic compression) when R < R0. As shown in figure 3, the

two results are in agreement for both of the equivalent radius Req∗ = (3/4π)V 1/3
∗ and
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Figure 3. The comparison between the MEL (solid line) and the spherical theory (Shaw 2009)
(dashed line) for the equivalent radius Req∗ and centroid zcen∗. The parameters for the case

are the liquid at p∞ = 101.3 kPa, ρ∞ = 998 kg m−3, c∞ = 1500m s−1; the bubble at R0 = 2 µm,
pv = 0.023p∞, σ =0.0728 Nm−1; the acoustic wave at f =1004 kHz, pa = 1.2(p∞ − pv) and
θ0 = π; γ = 1.0 as R � R0 and γ =1.4 as R < R0.

centroid zcen∗ for the first expansion and the first collapse phase, when the bubble is
approximately spherical (figure 4a). However, the later variation in the amplitude of
the present results is larger than those of Shaw (2009). This is not surprising, since
the bubble becomes non-spherical during the earlier part of the second expansion
phase (figure 4b) and the later part of the second collapse phase (figure 4c).

To check the validity of the assumption of the weak compressibility, we plot the
transient bubble-wall Mach numbers at the two poles (Mbtm, Mtop). As shown in
figure 4(d ), both Mach numbers are below 0.05, except at the end of the bubble
lifetime, when the Mach number at the bottom of the bubble reaches about 0.09. The
compressibility as measured by the transient Mach number is weak for this case.

8.3. Comparison with the BIM model of Calvisi et al. (2007)

We next compare the present work with Calvisi et al. (2007) for a bubble subjected to
a travelling wave using the BIM model based on the incompressible flow theory. The
case is characterized by R0 = 4.5 µm, f = 300 kHz, pa = 1.6p∞, θ0 = π and γ =1.667,
with the other parameters being the same as the case shown in figure 3. The bubble
shapes at the end of their lifetime are shown in figure 5(a). Both models predict the
generation of a bubble jet in the wave direction, and the results agree well in terms
of the jet shapes and bubble shapes. Figure 5(b) shows similar histories of the jet
tip velocities vjet∗ of the two models, reaching 52 for the present model and 61 for
the model of Calvisi et al. (2007), respectively. The smaller jet velocity of the present
model is due to the loss of the bubble energy due to acoustic radiation to the far field.

Figure 6 provides the bubble-wall Mach number at the jet tip and the average
bubble-wall Mach number defined as

Mmean =
1

N1

N1∑
i=1

Mi =
1

c∞N1

N1∑
i=1

∣∣∣∣∂ϕ

∂n

∣∣∣∣. (8.4)



Non-spherical bubble dynamics in a compressible liquid. Part 1 211

2.0(a)

1.5

0.5

–0.5

–1.5

–1.0

–2.0
–2 –1 0 1 2

–2 –1 0 1 2

–2 –1 0 1 2

0

10

5

0

M

r*

r*

t*

z*

–5
5 10 15 20

0

1.0

2.0(b)

1.5

0.5

–0.5

–1.5

–1.0

–2.0

0

1.0

2.0(c) (d)

1.5

0.5

–0.5

–1.5

–1.0

–2.0

z* 0

1.0

2.54

5.25

7.85

8.22

8.41

3.30

3.68

5.25
4.55

4.09

3.813.81

Mbtm
Mtop

(×10–2)

Figure 4. Bubble shapes for the case shown in figure 3 during (a) the first collapse phase,
(b) the second expansion phase and (c) the second collapse phase, respectively. (d) The
bubble-wall Mach numbers at the bottom and top of the bubble surface, respectively.

The maximum Mach number at the jet tip reaches 0.3 and is larger than 0.1 for
about 0.3 % of the bubble lifetime. The average Mach number is less than 0.01 for
most of the time except near the end of the bubble lifetime, when it reaches about
0.1. Consequently, the weakly compressible model should be suitable for this case.

9. Analysis of bubble behaviour when subjected to a weak acoustic wave
9.1. Bubble in resonant oscillation

We assume that the bubble is at equilibrium state before the arrival of the acoustic
wave, i.e. R0∗ =1.0, Rt0∗ = 1.0 and pg0∗ =1.0. We first analyse the bubble response
when subjected to an acoustic wave of low amplitude. The natural frequency ωn of
a spherical gas bubble subjected to a small disturbance is given by (Brennen 1995,
ch. 4)

ωn =
1

Rs

√
1

ρ∞

(
3kp(p∞ − pv) + 2(3kp − 1)

σ

Rs

)
, (9.1)
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where kp is the effective polytropic exponent of the gas. Note kp = γ would model
adiabatic behaviour. In dimensionless form with σ = 0, pv =0 and an adiabatic
process, we obtain a dimensionless natural frequency

ωn∗ =
√

3γ = 1.9365 as γ = 1.25. (9.2)

The first case considered is characterized by b∗ = 0.1, ω∗ = ωn∗. In dimensional
terms, b∗ω∗ = 0.194 corresponds to the acoustic wave with the pressure amplitude
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pa =0.194patm, with ω∗ = 1.94 corresponding to the wave frequency f = 30.8 kHz if
the equilibrium bubble radius is Rs = 100 µm. However, in the following discussion
we refer to dimensionless quantities unless specified otherwise.

Figure 7(a) shows the histories of the bubble volume 3/4π)v∗ (scaled so that initially
it has the value of 1.0) and the local acoustic pressure pa∗ = a∗ sin(ωn∗t∗). Initially, the
bubble collapses, since the acoustic pressure is initially zero and increases with time as
t∗ � Ta∗/4, where Ta∗ is the period of the acoustic wave. Driven by the acoustic wave,
the bubble volume oscillates with time, its phase is approximately π/2 behind that of
the acoustic pressure. The acoustic pressure is negative (a tension) when the bubble
expands, and vice versa. The work done by the acoustic pressure on the internal gas
is thus positive during both expansion and collapse phases, and the bubble absorbs
acoustic energy continuously. As a result, the oscillation amplitude of the bubble
volume increases with time monotonically and rapidly, with its maximum values
(peaks) increasing with time while the minimum values (troughs) decrease.

Since the problem considered is axisymmetric, the bubble’s displacement has only
one component zcen∗ in the z-direction. As shown in figure 7(b), the bubble centroid
(the geometrical centre) migrates in the direction of the acoustic wave. Its speed
generally increases with time, but vibrates up and down associated with the oscillation
of the bubble. The migration speed of a bubble is inversely proportional to its volume
and thus migrates rapidly when it is near its minimum volume.

The Kelvin impulse of a bubble was introduced by Benjamin & Ellis (1966), which
is defined as the integral of the potential ϕ∗ on the bubble surface S as follows:

I∗ =

∫
S

ϕ∗n dS. (9.3)

For a spherically oscillating bubble the Kelvin impulse I∗ will be zero. In general,
it gives an indication of the degree of asymmetry of the bubble’s motion. In fact,
the Kelvin impulse vector normally has the same direction as the jet and the bubble
migration. Blake et al. (1986, 1987), Blake (1988) and Best & Blake (1994) derive
a criterion governing the directions of the migration and re-entrant jet for bubbles
using the Kelvin impulse concept. As an example, when a bubble collapses above
an infinite horizontal wall under buoyancy, the directions of the jet and the bubble’s
motion are away from the wall when γdδb > 0.442 and vice versa for γdδb < 0.442,
where γd is the dimensionless distance of the initial bubble centroid to the wall and
δb =

√
ρ∞gRm/ (p∞ − pv) is the buoyancy parameter with Rm being the maximum

bubble radius.
Likewise, the Kelvin impulse has only one component, I∗ = I∗k. As shown in

figure 7(b) (dashed line), the Kelvin impulse is positive, i.e. along the wave direction,
oscillating at small amplitude following the bubble’s oscillation. The trend of the
Kelvin impulse is similar to that for the displacement of the bubble centroid.

To analyse the direction of the bubble motion, we display in figure 7(c) the history
of the bubble volume (3/4π)V∗ versus the history of the inertial force parameter δa

due to the acoustic wave, defined in (6.15). The inertial force parameter is just about
in phase with the bubble volume. It is positive while the bubble is at large volume
and vice versa. Because the inertial force is proportional to the bubble volume, the
accumulated inertial force is positive, i.e. being in the wave direction. This explains
the positive trends of the bubble displacement and the Kelvin impulse as shown in
figure 7(b).

Figure 8 shows the bubble shapes during the last (sixth) collapse phase. The bubble
is approximately spherical at the start of the collapse phase. Two jets are formed
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at the two poles at the end of this phase, with the jet in the wave direction having
greater momentum.

9.2. Non-resonant bubble oscillations

As expected, different types of responses occur depending on whether the wave
frequency ω∗ is equal, less or greater than the natural frequency of the bubble ωn∗.
We will compare the three cases: (i) the sub-resonant excitation at ω∗ = 0.6667ωn∗,
b∗ = 0.15; (ii) the resonant case at ω∗ = ωn∗, b∗ =0.1; and (iii) the super-resonant case
at ω∗ = 1.5ωn∗, b∗ =0.0667, noting that the resonant case has been discussed in § 9.1.

In the case of a harmonic plane acoustic wave, the average energy flux over an
oscillation period across a unit area perpendicular to the wave direction is given as

p̄ =
ρ∞

2c∞
ω2b2 =

ρ∞

2c∞
U 2(b∗ω∗)

2 =
ρ∞

2c∞
(b∗ω∗)

2. (9.4)

In this analysis we keep the average energy fluxes the same for the three cases under
consideration.

As shown in figures 9(a) and 9(b), the bubble volume histories in the sub- and
super-resonant cases are different from the resonant case shown in figure 7(a). They
oscillate with multi-frequencies, and the amplitudes do not increase with the time.
The non-spherical disturbance in the two cases is weaker than the resonant case,
since it is proportional to the bubble volume. The bubble shape at the sub-resonant
frequency ω∗ = 0.6667ωn∗ is shown at the end of 10 oscillations in figure 10(a). The

Figure 7. Time record of the acoustic bubble characterized by b∗ = 0.1, ω∗ = ωn∗: (a) the
bubble volume (3/4π)V∗ and acoustic pressure at the bubble centre 0.5pa∗/a∗; (b) the centroid
zcen∗ and the Kelvin impulse I∗ of the bubble; (c) (3/4π)V∗ and the inertial force parameter of
the acoustic wave 0.5δa/max(δa). The direction of propagation of the wave is indicated by c.
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ω∗ =0.6667ωn∗ and (b) b∗ = 0.0667, ω∗ = 1.5ωn∗.

polar jets develop much slower when compared to the resonant case and are far from
impact. The super-resonant frequency is shown in figure 10(b), where the bubble is
approximately spherical after 24 oscillations at ω∗ = 1.5ωn∗.

10. Bubble behaviour when subjected to a strong acoustic wave
10.1. Bubble in resonant oscillation

The case considered is characterized by b∗ = 1.0, ω∗ =ωn∗. To give insight into the phy-
sical driving pressures, a value of b∗ω∗ =1.936 corresponds to the pressure amplitude
of an acoustic wave of pa = 1.936patm. Figure 11(a) shows the bubble volume history
for the case, together with the histories of the local acoustic pressure pa∗/a∗ and the
inertial force parameter δa/ max(δa) of the acoustic wave. The bubble oscillation starts
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with a collapse since the acoustic pressure is zero at the beginning and increases with
time till t∗ = Ta∗/4. The bubble then undergoes a long expansion period, reaching
11V0 at its maximum volume. This is followed by an extensive collapse phase to a
minimum volume of 0.003V0. The much larger bubble volume is associated with the
positive inertial force parameter δa with the accumulated effect of the inertial force in
the wave direction.

Figure 11(b) shows the bubble shape during the second collapse phase. The bubble
is approximately spherical shortly before the end of the collapse phase. The bottom
of the bubble surface becomes flatter near the end of the collapse phase and a jet is
observed to form along the wave direction. This is as expected, since the accumulated
acoustic inertial force appears positive for the case. The jet develops rapidly and
impacts on the opposite bubble surface at the end of the collapse phase.
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Figure 12 shows the bubble shape for the case with b∗ = 1.0, ω∗ = ωn∗, θ0 = π, which
is similar to that for the case at θ0 = 0.0 as shown in figure 11(b). The bubble is
approximately spherical till the very latest stage of the collapse phase. A jet along the
wave direction develops rapidly and the jet impacts on the opposite bubble surface
at the end of the collapse phase.

Global behaviours in the two cases are compared in figure 13(a–d) for the bubble
volume, centroid, Kelvin impulse and jet tip speed. At θ0 = π, the bubble expands to
the maximum volume of 7.4V0 and then collapses to the minimum volume of 0.004V0.
At θ0 = 0.0, the bubble starts with a minor collapse phase, and then undergoes an
extensive expansion to reach the maximum volumes of 11.0V0, and an extensive
collapse to reach the minimum volumes of 0.003V0.

As shown in figure 13(b), the Kelvin impulse is negative but at a small magnitude
during a larger part of its lifetime at θ0 = π, but becomes positive with a much larger
magnitude during the later part of its lifetime. The Kelvin impulse acts along the
wave direction at θ0 = 0.0 during the whole bubble lifetime, and is likewise much
larger during the second half of its lifetime.

As shown in figure 13(c), at θ0 = π, the bubble centroid zcen∗ moves in an opposite
direction to the wave at small amplitude during its first half lifetime, but moves
forward with a much larger amplitude during the second half lifetime. At θ0 = 0.0,
it first vibrates at small amplitude and then moves in the wave direction at a much
larger amplitude. In both cases, the bubble migrates rapidly at the end of its lifetime
as it collapses towards the minimum volume.

Likewise, the jet tip velocity vjet∗ of the bubble increases rapidly near the end of
its lifetime (figure 13d). The jetting occurs earlier at θ0 = π. The larger dimensionless
jet velocity occurs at θ0 = 0.0, being about 60 or 600 m s−1 in dimensional terms.

Jetting phenomenon is associated with non-spherical bubbles and translational
motion of the bubble. This may be induced by a buoyancy force (Cole 1948) or the
presence of a rigid boundary near the oscillating bubble, or the presence of a free
surface. In the absence of buoyancy forces, the jet is normally directed towards a rigid
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boundary (Lauterborn & Bolle 1975; Tomita & Shima 1986; Vogel, Lauterborn &
Timm 1989; Tomita et al. 2002) and away from a free surface (Chahine & Bovis 1980;
Blake & Gibson 1981; Pearson, Blake & Otto 2004a; Pearson et al. 2004b). Besides the
acoustic examples in this paper, high-speed jets from collapsing cavitation bubbles
may also contribute to the severe damage to ship propellers or hydraulic pumps
(Young 1989; Philipp & Lauterborn 1998) and to naval structures from underwater
explosions (Cole 1948; Blake & Gibson 1987).

In this study, jetting caused by a strong acoustic wave is normally in the direction
of the wave propagation, with a very high speed, and formed in a very short time
period as the bubble approaches minimum volume, similar to the effects noted above.
If a bubble is subjected to a weak acoustic wave, two jets may develop at the poles
in opposite directions. Jetting in acoustic cavitation plays a key role in medical
ultrasonics such as drug delivery and sonoporation (Putterman & Weninger 2000;
Day 2005; Klaseboer et al. 2007). Jetting in acoustic cavitation also has applications
in aqueous systems (Young 1989; Leighton 1994; Blake et al. 1999), where vigorous
jets generated by an acoustic bubble can have important mixing, molecular and
bond-cleavage effects, as well as the more familiar cleaning phenomena.
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in figures 11(b), 14(a) and 14(b, c).

10.2. Non-resonant bubble oscillations

We will consider a sub-resonant case with b∗ = 1.5, ω∗ = 0.6667ωn∗ and a super-
resonant case with b∗ =0.6667, ω∗ = 1.5ωn∗, and compare them with the resonant case
shown in figure 11(b). The three cases have the same average energy flux.

Figure 14(a–c) shows the bubble shapes during the last collapse phase and the
subsequent rebounding phase for the two non-resonant cases. The bubble collapse
shapes at ω <ωn and ω >ωn∗ are similar to those at ω = ωn as illustrated in figure 11(b).
The bubble is approximately spherical shortly before the end of the last collapse phase
and a jet is observed to form along the wave direction near the end of the collapse
phase, except the jet forms earlier for the super-resonant case (figure 14b). This is
again because the accumulated acoustic inertial force is positive for the two cases.
The jet develops rapidly and impacts the opposite bubble surface during the late
collapse phase (figure 14a) or the early stage of the subsequent rebounding phase
(figure 14b).

The bubble volume histories for the three cases are shown in figure 14(c). For both
the sub-resonant and resonant cases, the bubble undergoes a long expansion period
and this is followed by a shorter collapse phase, and the bubble becomes toroidal at
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around its minimum volume. For the super-resonant case, the bubble undergoes two
long cycles of oscillation in its lifetime, with relatively smaller amplitude.

11. Summary and conclusions
Bubble dynamics caused by ultrasound waves have wide and important applications

in medical ultrasonics and sonochemistry. In this study, compressible effects are
incorporated into a model based on the boundary integral method, which incorporates
a greater physical detail into modelling bubble behaviour than previously available.

A compressible theory is developed using the method of matched asymptotic
expansions. The perturbation is performed to the second order in terms of the
bubble-wall Mach number, with the first-order solutions being pure incompressible
flow effect and the second-order solutions linear in the Mach number. The inner flow
for the first two orders near the bubble can be approximated as incompressible. The
outer flow for the first two orders far away from the bubble can be described by
the linear wave equation and is shown as a direct problem. Thus, the non-spherical
bubble dynamics in a weakly compressible liquid is modelled approximately by the
Laplace equation with the compressible effects appearing only in the far-field condi-
tion, which is obtained from the matching between the inner and outer expansions.

A modified boundary integral formulation associated with the MEL is explored
in this study. The primary advantage of this method is its computational efficiency.
This model is evaluated against a spherical bubble in weakly compressible liquids;
and excellent agreement is obtained with the Keller–Herring equation for the bubble
radius evolution up to four oscillations. More extensive simulations are conducted
for a non-spherical oscillating bubble in a compressible liquid caused by an acoustic
wave.

A series of mechanisms and features of non-spherical dynamics of acoustic
cavitation bubbles have been identified in this study, which are summarized as
follows.

(i) Compared to the earlier incompressible flow modelling, there are three
additional effects associated with the acoustic wave: (a) a local acoustic pressure at
the bubble centre, (b) an acoustic radiation term due to the acoustic wave generated
by the bubble oscillation, (c) an inertial force effect associated with the acoustic wave.
The first two effects lead to spherical wave behaviour whereas the last effect leads to
non-spherical wave behaviour.

(ii) The inertial force effect of the acoustic wave appears out of phase with the
bubble volume. It is positive when the bubble assumes a large volume and vice versa.
The accumulated inertial effect is along the wave direction.

(iii) The bubble Kelvin impulse is generally along the wave direction with the
bubble normally migrating in the same direction.

(iv) The time-dependent shapes of acoustic bubbles depend on the strength of the
acoustic wave. When subjected to a weak acoustic wave, a bubble usually oscillates
for many cycles in a singly connected form. Jets form at the two poles of the bubble
surface during the later stage of the bubble’s lifetime, where previously the bubble is
approximately spherical.

(v) Resonant oscillations occur when the acoustic frequency equals the natural
frequency of the bubble. In resonant oscillations, the bubble absorbs energy from the
acoustic wave almost continuously through its lifetime, and therefore the oscillation
amplitude increases rapidly with time, with the maximum values (peaks) of the
bubble volume also increasing with time while the minimum values (troughs) decrease.
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Resonant oscillations are associated with most rapid non-spherical deformation of
the bubble shape.

(vi) When subjected to a strong acoustic wave, a bubble oscillates for only a very
few cycles in singly connected form, due to the strong inertial effect of the acoustic
wave. The bubble absorbs energy rapidly from the acoustic wave, and therefore
usually undergoes a relatively long expansion phase to a large maximum volume,
followed by an extensive but shorter collapse phase. A bubble jet is often formed
along the wave direction towards the end of the collapse phase, developing rapidly
and impacting the opposite bubble surface in the collapse phase or during the early
stage of the subsequent rebounding phase.

The theoretical and computational results developed in this paper for highly non-
spherical bubble behaviour reveal a number of new phenomena that need to be
investigated experimentally.
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